A Comparative Biomechanical Study of Spinal Fixation Using Cotrel-Dubousset Instrumentation

Abstract
A biomechanical study was performed comparing the stiffness and stability of Cotrel-Dubousset (CD) spinal instrumentation with that of segmentally wired Harrington distraction rods and segmentally wired Luque rods under conditions of single-level instability. The axial and torsional stiffness coefficients of each system were determined on a customized geometric spine simulator fashioned from stainless steel. The relative stability of each instrumentation system was then compared by mounting the fixation systems on bovine thoracic spines from 12-week-old calves, destabilized by anterior vertebrectomy to create simulated two column instability. Thirteen spines were tested. Each specimen was tested under axial and torsional loading conditions while monitoring with a personal computer-based data acquisition system was performed. The stability of first- and second-level CD instrumentation was tested on the bovine specimens. First-level CD instrumentation involved double-hook fixation one level above and below the level of instability. Second-level CD instrumentation involved fixation two levels above and below the level of instability without fixation at the intermediate level. In axial loading, double-level wired Harrington distraction rods, distraction rods, double-level wired Luque rods, and first-level CD rods were 26.5%, 18.4%, and 21.5%, respectively, as stable as second-level CD instrumentation. In torsion, double-level Harrington, double-level Luque, and second-level CD rods were 13%, 64%, and 34%, respectively, as stable as first level CD instrumentation. Locking hooks, doublehook configurations, and stabilizing transverse traction devices of the CD contributed to its greater stability. Firstlevel CD instrumentation is recommended for rotational instability while second-level CD instrumentation is preferred for axial instability.

This publication has 0 references indexed in Scilit: