Abstract
Monte Carlo evidence shows that in structural VAR models with fat-tailed or skewed innovations the coverage accuracy of impulse response confidence intervals may deterorate substantially compared to the same model with Gaussian innovations. Empirical evidance suggests that such departures from normality are quite plausible for economic time series. The simulation results suggest that applied researchers are best off using nonparametric bootstrap intervals for impulse responses, regardless of whether or not there is evidence of fat tails or skewness in the error distribution. Allowing for departures from normality is shown to considerably weaken the evidence of the delayed overshooting puzzle in Eichenbaum and Evans (1995).