Outer Membrane Proteins ofFibrobacter succinogeneswith Potential Roles in Adhesion to Cellulose and in Cellulose Digestion

Abstract
Comparative analysis of binding of intact glucose-grownFibrobacter succinogenesstrain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membranes, respectively, of strain S85 and adhesion-defective mutant strains in conjunction with mass spectrometry analysis of tryptic peptides was used to identify proteins with roles in adhesion to and digestion of cellulose. Examination of the binding to cellulose of detergent-solubilized outer membrane proteins from S85 and mutant strains revealed six proteins in S85 that bound to crystalline cellulose that were absent from the mutants and five proteins in Ad1 that bound to acid-swollen cellulose that were absent from Ad4. Twenty-five proteins from the outer membrane fraction of cellulose-grownF. succinogeneswere identified by 2-DE, and 16 of these were up-regulated by growth on cellulose compared to results with growth on glucose. A protein identified as a Cl-stimulated cellobiosidase was repressed in S85 cells growing on glucose and further repressed in the mutants, while a cellulose-binding protein identified as pilin was unchanged in S85 grown on glucose but was not produced by the mutants. The candidate differential cellulose binding proteins of S85 and the mutants and the proteins induced by growth of S85 on cellulose provide the basis for dissecting essential components of the cellulase system ofF. succinogenes.

This publication has 47 references indexed in Scilit: