Potentiation of paclitaxel activity by the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin in human ovarian carcinoma cell lines with high levels of activated AKT
- 1 May 2006
- journal article
- retracted article
- Published by American Association for Cancer Research (AACR) in Molecular Cancer Therapeutics
- Vol. 5 (5) , 1197-1208
- https://doi.org/10.1158/1535-7163.mct-05-0445
Abstract
Activation of the phosphatidylinositol-3-kinase (PI3K)/AKT survival pathway is a mechanism of cytotoxic drug resistance in ovarian cancer, and inhibitors of this pathway can sensitize to cytotoxic drugs. The HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) depletes some proteins involved in PI3K/AKT signaling, e.g., ERBB2, epidermal growth factor receptor (EGFR), and phosphorylated AKT (p-AKT). 17-AAG and paclitaxel were combined (at a fixed 1:1 ratio of their IC50) in four ovarian cancer cell lines that differ in expression of p-AKT, EGFR, and ERBB2. The EGFR-overexpressing A431 and KB epidermoid cell lines were also included. Combination indices (CI) were calculated using the median-effect equation and interpreted in the context of 17-AAG-mediated inhibition of PI3K signaling. Synergy was observed in IGROV-1- and ERBB2-overexpressing SKOV-3 ovarian cancer cells that express a high level of constitutively activated p-AKT [CI at fraction unaffected (fu)0.5 = 0.50 and 0.53, respectively]. Slight synergy was observed in A431 cells (moderate p-AKT/overexpressed EGFR; CI at fu0.5 = 0.76) and antagonism in CH1 (moderate p-AKT), HX62 cells (low p-AKT), and KB cells (low p-AKT/overexpressed EGFR; CI at fu50 = 3.0, 3.5, and 2.0, respectively). The observed effects correlated with changes in the rate of apoptosis induction. 17-AAG induced a decrease in HSP90 client proteins (e.g., C-RAF, ERBB2, and p-AKT) or in downstream markers of their activity (e.g., phosphorylated extracellular signal-regulated kinase or p-AKT) in SKOV-3, IGROV-1, and CH1 cells at IC50 concentrations. A non–growth-inhibitory concentration (6 nmol/L) reduced the phosphorylation of AKT (but not extracellular signal-regulated kinase) and sensitized SKOV-3 cells to paclitaxel. In conclusion, 17-AAG may sensitize a subset of ovarian cancer to paclitaxel, particularly those tumors in which resistance is driven by ERBB2 and/or p-AKT. [Mol Cancer Ther 2006;5(5):1197–208]Keywords
This publication has 38 references indexed in Scilit:
- Phase I Pharmacokinetic and Pharmacodynamic Study of 17-Allylamino, 17-Demethoxygeldanamycin in Patients With Advanced MalignanciesJournal of Clinical Oncology, 2005
- ERBB receptors and cancer: the complexity of targeted inhibitorsNature Reviews Cancer, 2005
- Putting the Rap on AktJournal of Clinical Oncology, 2004
- Quantitative Effects on c-Jun N-Terminal Protein Kinase Signaling Determine Synergistic Interaction of Cisplatin and 17-Allylamino-17-Demethoxygeldanamycin in Colon Cancer Cell LinesMolecular Pharmacology, 2004
- Hsp90 as a therapeutic target in prostate cancerSeminars in Oncology, 2003
- Ovarian cancer: strategies for overcoming resistance to chemotherapyNature Reviews Cancer, 2003
- αv integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cellsOncogene, 2003
- STI571 (Gleevec™) as a paradigm for cancer therapyTrends in Molecular Medicine, 2002
- Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperoneOncogene, 2000
- The Hallmarks of CancerCell, 2000