Proton spin–lattice relaxation study of a partial bilayer smectic A phase

Abstract
Measurements of proton spin-lattice relaxation rates for the partial bilayer smectic A phase of 4-((4′-n-hexadecyloxybenzylidene)-amino) benzonitrile obtained at different Larmor frequencies and temperatures show that the essential relaxation mechanisms in the MHz frequency region are translational self-diffusion and local molecular reorientations similar to those in monolayer smectics. The values of the diffusion constant obtained from the fit of the theory to the experimental data show a range from 2.6 × 10−11 m2 s−1 at 95°C to 1.7 × 10−11 m2 s−1 at 75°C. A dynamic process specific to the partial bilayer smectic A phase seems to influence relaxation below 10 MHz. It can be associated either with the dimerization of molecules in the layers or with a higher value of the low cut-off frequency of order director fluctuations than that found in monolayer smectic A phases.