Analysis of PSLQ, an integer relation finding algorithm

Abstract
Let be either the real, complex, or quaternion number system and let be the corresponding integers. Let be a vector in . The vector has an integer relation if there exists a vector , , such that . In this paper we define the parameterized integer relation construction algorithm PSLQ, where the parameter can be freely chosen in a certain interval. Beginning with an arbitrary vector , iterations of PSLQ will produce lower bounds on the norm of any possible relation for . Thus PSLQ can be used to prove that there are no relations for of norm less than a given size. Let be the smallest norm of any relation for . For the real and complex case and each fixed parameter in a certain interval, we prove that PSLQ constructs a relation in less than iterations.

This publication has 25 references indexed in Scilit: