Abstract
Partially and fully deacetylated chitosan fragments and oligomers were compared for their potency to elicit formation of the 1.3-β-glucan callose in suspension-cultured cells and protoplasts of Catharanthus roseus (line 385). Chitosan oligomers induced little callose formation, while callose synthesis increased with the degree of polymerization of chitosan up to several thousand corresponding to a molecular mass near 106 Da. At a comparable degree of polymerization, partially N-acetylated chitosan fragments were less effective. Colloidal chitin and chitin oligomers induced only trace callose synthesis in protoplasts. These results indicate that the primary interaction involved the amino groups of chitosan and numerous negative charges at the surface of the plasma membrane with spacing in the nanometer range and occurring regularly over micrometer stretches. Charged phospholipid head-groups may fulfill these requirements. The resulting alteration of membrane fluidity may lead to the changes in ion transport known to be associated with the induction of callose formation.