Theory of single-particle properties of the Hubbard model

Abstract
It is shown that it is possible to quantitatively explain quantum Monte Carlo results for the Green's function of the two-dimensional Hubbard model in the weak to intermediate coupling regime. The analytic approach includes vertex corrections in a paramagnon-like self-energy. All parameters are determined self-consistently. This approach clearly shows that in two dimensions Fermi-liquid quasiparticles disappear in the paramagnetic state when the antiferromagnetic correlation length becomes larger than the electronic thermal de Broglie wavelength.

This publication has 0 references indexed in Scilit: