Removal of Mg2+ inhibition of cardiac ryanodine receptor by palmitoyl coenzyme A

Abstract
45Ca2+ fluxes and planar bilayer recordings indicated that the fatty acid metabolise palmitoyl coenzyme A, but not free coenzyme A or palmitic acid, stimulated the cardiac ryanodine receptor channel of pig heart sarcoplasmic reticulum. Palmitoyl CoA reactivated channels inhibited by concentrations of cytoplasmic free Mg2+ in the physiological range. Reactivation by palmitoyl CoA in the presence of Mg2+ was stimulated by myoplasmic free Ca2+ in the micromolar range. Acyl coenzyme A derivatives may be utilized by cardiac muscle cells to compensate for the severe Mg2+ inhibition of ryanodine receptors which would otherwise leave Ca2+ stores unresponsive to Ca2+ and to other cytosolic ligands involved in signal transduction.