Middle Cerebral Artery Occlusion and Reperfusion in Primates Monitored by Microdialysis and Sequential Positron Emission Tomography
- 1 July 2001
- journal article
- research article
- Published by Wolters Kluwer Health in Stroke
- Vol. 32 (7) , 1574-1580
- https://doi.org/10.1161/01.str.32.7.1574
Abstract
Background and Purpose —In a previous investigation concerning the hemodynamic and metabolic changes over time displayed by sequential positron emission tomography (PET) in a middle cerebral artery (MCA) occlusion/reperfusion primate model, a metabolic threshold for irreversible ischemia could be identified (reduction of metabolic rate of oxygen [CMRO 2 ] to ≈60% of the contralateral hemisphere). To evaluate the potential of microdialysis (MD) as an instrument for chemical brain monitoring, the aim of this subsequent study was to relate the chemical changes in MD levels directly to the regional metabolic status (CMRO 2 above or below the metabolic threshold) and the occurrence of reperfusion, as assessed by PET. Methods —Continuous MD (2 probes in each brain) and sequential PET measurements were performed during MCA occlusion (2 hours) and 18 hours (mean) of reperfusion in 8 monkeys ( Macaca mulatta ). Energy-related metabolites (lactate, pyruvate, and hypoxanthine) and glutamate were analyzed. The MD probe regions were divided into 3 categories on the basis of whether CMRO 2 was below or above 60% of the contralateral region (metabolic threshold level) during MCA occlusion and whether reperfusion was obtained: severe ischemia with reperfusion (n=4), severe ischemia without reperfusion (n=4), and penumbra with reperfusion (n=5). Results —The lactate/pyruvate ratio, hypoxanthine, and glutamate showed similar patterns. MD probe regions with severe ischemia and reperfusion and probe regions with severe ischemia and no reperfusion displayed high and broad peaks, respectively, during MCA occlusion, and the levels almost never decreased to baseline. Penumbra MD probe regions displayed only slight transient increases during MCA occlusion and returned to baseline. Conclusions —This experimental study of focal ischemia showed that the extracellular changes of energy-related metabolites and glutamate differed depending on the ischemic state of the brain during MCA occlusion and depending on whether reperfusion occurred. If MD proves to be beneficial in clinical practice, it appears important to observe relative changes over time.Keywords
This publication has 19 references indexed in Scilit:
- Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis studyJournal of Neurosurgery, 1998
- Factors affecting excitatory amino acid release following severe human head injuryJournal of Neurosurgery, 1998
- Simultaneous Intracerebral Microdialysis and Positron Emission Tomography in the Detection of Ischemia in Patients with Subarachnoid HemorrhageJournal of Cerebral Blood Flow & Metabolism, 1996
- Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhageJournal of Neurosurgery, 1996
- Intracerebral Microdialysis of Glutamate and Aspartate Two Vascular Territories after Aneurysmal Subarachnoid HemorrhageNeurosurgery, 1996
- Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysisJournal of Neurosurgery, 1992
- Striatal dopamine and glutamate release: effects of intranigral injections of substance PActa Physiologica Scandinavica, 1990
- Simultaneous determination of lactate, pyruvate, and ascorbate in microdialysis samples from rat brain, blood, fat, and muscle using high-performance liquid chromatographyJournal of Pharmacological Methods, 1989
- Correction for the Presence of Intravascular Oxygen-15 in the Steady-State Technique for Measuring Regional Oxygen Extraction Ratio in the Brain: 1. Description of the MethodJournal of Cerebral Blood Flow & Metabolism, 1983
- Quantitative Measurement of Regional Cerebral Blood Flow and Oxygen Metabolism in Man Using 15O and Positron Emission TomographyJournal of Computer Assisted Tomography, 1980