• 5 March 1990
    • journal article
    • research article
    • Vol. 265  (7) , 4058-4063
Abstract
The formation of .delta.-aminolevulinic acid, the first committed precursor in porphyrin biosynthesis, occurs in certain bacteria and in the chloroplasts of plants and algae in a three-step, tRNA-dependent transformation of glutamate. Glutamyl-tRNA reductase, the second enzyme of this pathway, reduces the activated carboxyl group of glutamyl-tRNA (Glu-tRNA) in the presence of NADPH and releases glutamate 1-semialdehyde (GSA). We have purified Glu-tRNA reductase from Chlamydomonas reinhardtii by employing six different chromatographic separations. The apparent molecular mass of the protein when analyzed under both denaturing (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and nondenaturing conditions (rate zonal sedimentation on glycerol gradients) was 130,000 Da; this indicates that the active enzyme is a monomer. In the presence of NADPH Glu-tRNA reductase catalyzed the reduction to GSA of glutamate acylated to the homologous tRNA. Thus, the reductase alone is sufficient for conversion of Glu-tRNA to GSA. In the absence of NADPH, a stable complex of Glu-tRNA reductase with Glu-tRNA can be isolated.

This publication has 16 references indexed in Scilit: