Leishmania infantum‐specific T cell lines derived from asymptomatic dogs that lyse infected macrophages in a major histocompatibility complex‐restricted manner

Abstract
Protective immunity to leishmaniasis has been demonstrated in murine models to be mediated by T cells and the cytokines they produce. We have previously shown that resistance to experimental Leishmania infantum infection in the dog, a natural host and reservoir of the parasite, is associated with the proliferation of peripheral blood mononuclear cells (PBMC) to parasite antigen and to the production of interleukin-2 and tumour necrosis factor. In this study we show that PBMC from asymptomatic experimentally infected dogs produce interferon-γ upon parasite antigen-specific stimulation, whereas lymphocytes from symptomatic dogs do not. In addition, we report for the first time the lysis of L. infantum-infected macrophages by PBMC from asymptomatic dogs and by parasite-specific T cell lines derived from these animals. These T cell lines were generated by restimulation in vitro with parasite soluble antigen and irradiated autologous PBMC as antigen-presenting cells. We show that lysis of infected macrophages by T cell lines is major histocompatibility complex restricted. Characterization of parasite-specific cytotoxic T cell lines revealed that the responding cells are CD8+. However, for some animals, CD4+ T cells that lyse infected macrophages were also found. In contrast to asymptomatic dogs, lymphocytes from symptomatic dogs failed to proliferate and produce interferon-γ after Leishmania antigen stimulation in vitro and were not capable of lysing infected macrophages. These results suggest that both the production of interferon-γ and the destruction of the parasitized host cells by Leishmania-specific T cells play an important role in resistance to visceral leishmaniasis.

This publication has 37 references indexed in Scilit: