Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation.
Open Access
- 1 October 1989
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 86 (20) , 7823-7827
- https://doi.org/10.1073/pnas.86.20.7823
Abstract
Site-directed mutants of cytochrome P-450cam (the cytochrome P-450 that acts as the terminal monooxygenase in the d-camphor monooxygenase system), in which threonine-252 had been changed to alanine, valine, or serine, were employed to study the role of the hydroxy amino acid in the monooxygenase reaction. The mutant enzymes were expressed in Escherichia coli and were purified by a conventional method. All the mutant enzymes in the presence of d-camphor exhibited optical absorption spectra almost indistinguishable from those of the wild-type enzyme in their ferric, ferrous, oxygenated, and carbon monoxide ferrous forms. In a reconstituted system with putidaredoxin and its reductase, the alanine enzyme consumed O2 at a rate (1100 per min per heme) comparable to that of the wild-type enzyme (1330 per min per heme), whereas the amount of exo-5-hydroxycamphor formed was less than 10% of that formed by the wild-type enzyme. About 85% of the O2 consumed was recovered as H2O2. The valine enzyme also exhibited an oxidase activity to yield H2O2 accompanied by a relative decrease in the monooxygenase activity. On the other hand, the serine enzyme exhibited essentially the same monooxygenase activity as that of the wild-type enzyme. Thus, uncoupling of O2 consumption from the monooxygenase function was produced by the substitution of an amino acid without a hydroxyl group. When binding of O2 to the ferrous forms was examined, the alanine and valine enzymes formed instantaneously an oxygenated form, which slowly decomposed to the ferric form with rates of 5.5 and 3.2 x 10(-3) sec-1 for the former and latter enzymes, respectively. Since these rates were too slow to account for the overall rates of O2 consumption, the formation of H2O2 was considered to proceed not by way of this route but through the decomposition of a peroxide complex formed by reduction of the oxygenated form by reduced putidaredoxin. Based on these findings, a possible mechanism for oxygen activation in this monooxygenase reaction has been discussed.This publication has 27 references indexed in Scilit:
- High-resolution crystal structure of cytochrome P450camPublished by Elsevier ,2005
- P450cam gene cloning and expression in Pseudomonas putida and Escherichia coliBiochemical and Biophysical Research Communications, 1985
- Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectorsGene, 1985
- Determination of Nucleotide Sequences in DNAScience, 1981
- Oxygen Activation by Cytochrome P-4501Annual Review of Biochemistry, 1980
- [17] Bacterial P-450cam methylene monooxygenase components: Cytochrome m, putidaredoxin, and putidaredoxin reductasePublished by Elsevier ,1978
- Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P-450Biochemical and Biophysical Research Communications, 1976
- Superoxide anion production by the autoxidation of cytochrome P450camBiochemical and Biophysical Research Communications, 1974
- Oxygenated cytochrome P-450 and its possible role in enzymic hydroxylationBiochemical and Biophysical Research Communications, 1971
- A new spectral intermediate associated with cytochrome P-450 function in liver microsomesBiochemical and Biophysical Research Communications, 1971