Holographic optical switching: the "ROSES" demonstrator

Abstract
The design, assembly, and performance of a prototype 1/spl times/8 free-space switch demonstrator using reconfigurable holograms are reported. Central to the switch fabric is a ferroelectric liquid crystal (FLC) on silicon spatial light modulator (SLM) deposited with a 540/spl times/1 array of highly reflective and planar mirror strips. The input and output ports of the switch are fabricated as a linear array of silica planar waveguides connected to single-mode fibers, and the holographic beam-steerer operates without the need for adjustment or dynamic alignment. The waveguide array and the single Fourier transform lens for the 2f holographic replay system are housed in an opto-mechanical mount to provide stability. The switch operates at 1.55 /spl mu/m wavelength and has a designed optical bandwidth of >60 nm. The first measured insertion loss and crosstalk figures are 16.9 dB and -19.1 dB, respectively. Improvements in SLM performance, the use of new addressing schemes and the introduction of better alignment techniques are expected to improve these figures considerably. The preliminary performance of a 3/spl times/3 optical crossconnect is also presented to show that this technology is scalable to N/spl times/N switching fabrics.

This publication has 12 references indexed in Scilit: