The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons

Abstract
We have recorded the responses of fibers in the cochlear nerve and cells in the cochlear nucleus of the anesthetized guinea pig to synthetic vowels [i], [a], and [u] at 60 and 80 dB SPL. Histograms synchronized to the pitch period of the vowel were constructed, and locking of the discharge to individual harmonics was estimated from these by Fourier transformation. In cochlear nerve fibers from the guinea pig, the responses were similar in all respects to those previously described for the cat. In particular, the average-localized-synchronized-rate functions (ALSR), computed from pooled data, had well-defined peaks corresponding to the formant frequencies of the three vowels at both sound levels. Analysis of the components dominating the discharge could also be used to determine the voice pitch and the frequency of the first formants. We have computed similar population measures over a sample of primarylike cochler nucleus neurons. In these primarylike cochlear nucleus cell responses, the locking to the higher-frequency formants of the vowels is weaker than in the nerve. This results in a severe degradation of the peaks in the ALSR function at the second and third formant frequencies at least for [i] and [u]. This result is somewhat surprising in light of the reports that primarylike cochlear nucleus cells phaselock, as well as do cochlear nerve fibers.

This publication has 8 references indexed in Scilit: