A ‘‘compact Green function’’ approach to the time-domain direct and inverse problems for a stratified dissipative slab
- 1 October 1993
- journal article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 34 (10) , 4628-4645
- https://doi.org/10.1063/1.530361
Abstract
A new type of Green function approach is introduced for time-domain scattering for a stratified dissipative slab. The new Green functions are defined as mappings from the transmitted field to the split fields (i.e., the right-moving and left-moving fields) at any point within the stratified slab. Unlike the usual Green functions, the present Green functions have compact support in the time variable. The new technique is illustrated for the case of normally incident electromagnetic waves on a stratified slab where the permittivity, permeability, and conductivity vary with the depth. The linear and homogeneous partial differential equations (PDEs) for these ‘‘compact Green functions’’ are derived. The PDEs together with the initial and boundary conditions are well suited for a numerical treatment. Numerical results for the compact Green functions are presented in the direct problem, while in the inverse problem the permittivity and conductivity (or the permeability and conductivity) are reconstructed simultaneously using the reflection and transmission data for the first round trip. The present method is useful and attractive for both the direct and inverse problems due to its simplicity, high speed, and high accuracy in numerical computations.Keywords
This publication has 15 references indexed in Scilit:
- Inverse problem for the dissipative wave equation in a stratified half-space and linearization of the imbedding equationsInverse Problems, 1992
- Factorization of a dissipative wave equation and the Green functions technique for axially symmetric fields in a stratified slabJournal of Mathematical Physics, 1992
- The electromagnetic scattering problem in the time domain for a dissipative slab and a point source using invariant imbeddingJournal of Mathematical Physics, 1991
- The optimization of electromagnetic energy within a dissipative slabWave Motion, 1991
- A green's function approach to the determination of internal fieldsWave Motion, 1989
- Direct and inverse scattering in the time domain for a dissipative wave equation. Part IV: Use of phase velocity mismatches to simplify inversionsInverse Problems, 1989
- Direct and inverse scattering in the time domain for a dissipative wave equation. III. Scattering operators in the presence of a phase velocity mismatchJournal of Mathematical Physics, 1987
- Direct and inverse scattering in the time domain for a dissipative wave equation. II. Simultaneous reconstruction of dissipation and phase velocity profilesJournal of Mathematical Physics, 1986
- Direct and inverse scattering in the time domain for a dissipative wave equation. I. Scattering operatorsJournal of Mathematical Physics, 1986
- Obtaining scattering kernels using invariant imbeddingJournal of Mathematical Analysis and Applications, 1983