The Use of TRMM Precipitation Radar Observations in Determining Ground Radar Calibration Biases
- 1 April 2001
- journal article
- Published by American Meteorological Society in Journal of Atmospheric and Oceanic Technology
- Vol. 18 (4) , 616-628
- https://doi.org/10.1175/1520-0426(2001)018<0616:tuotpr>2.0.co;2
Abstract
Since the successful launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, measurements of a wide variety of precipitating systems have been obtained with unprecedented detail from the first space-based radar [precipitation radar (PR)]. In this research, a methodology is developed that matches coincident PR and ground-based volume scanning weather radar observations in a common earth parallel three-dimensional Cartesian grid. The data matching is performed in a way that minimizes uncertainties associated with the type of weather seen by the radars, grid resolution, and differences in radar sensitivities, sampling volumes, viewing angles, and radar frequencies. The authors present comparisons of reflectivity observations from the PR and several U.S. weather surveillance Doppler radars (WSR-88D) as well as research radars from the TRMM field campaigns in Kwajalein Atoll and the Large Biosphere Atmospheric (LBA) Experiment. Correlation values above 0.8 are determined between PR and gro... Abstract Since the successful launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, measurements of a wide variety of precipitating systems have been obtained with unprecedented detail from the first space-based radar [precipitation radar (PR)]. In this research, a methodology is developed that matches coincident PR and ground-based volume scanning weather radar observations in a common earth parallel three-dimensional Cartesian grid. The data matching is performed in a way that minimizes uncertainties associated with the type of weather seen by the radars, grid resolution, and differences in radar sensitivities, sampling volumes, viewing angles, and radar frequencies. The authors present comparisons of reflectivity observations from the PR and several U.S. weather surveillance Doppler radars (WSR-88D) as well as research radars from the TRMM field campaigns in Kwajalein Atoll and the Large Biosphere Atmospheric (LBA) Experiment. Correlation values above 0.8 are determined between PR and gro...Keywords
This publication has 0 references indexed in Scilit: