Tissue effects of subclinical diode laser treatment of the retina.

Abstract
SINCE Maiman1 first developed a ruby laser, laser design has advanced to the point that lasers are now used to treat many vitreoretinal conditions.2 Argon, krypton, and, more recently, diode lasers have been shown to produce therapeutically useful lesions that have a similar ophthalmoscopic appearance, and that also appear on histological examination of both human and animal eyes to elicit similar tissue effects on the outer retina and retinal pigment epithelium (RPE).3-8 The extent of tissue damage that is required to generate a therapeutic outcome is generally not known. Gray-white burns are used because they can be detected clinically at the time of treatment, and ancillary damage to the retina has been considered acceptable or perhaps unavoidable.