Nonlinear Theory of Void Formation in Colloidal Plasmas

Abstract
A nonlinear time-dependent model for void formation in colloidal plasmas is proposed. For experimentally relevant initial conditions, the model describes the nonlinear evolution of a zero-frequency linear instability that grows rapidly in the nonlinear regime and subsequently saturates to form a void. A number of features of the model are consistent with experimental observations under laboratory and microgravity conditions.