Periodic orbit quantization of the anisotropic Kepler problem

Abstract
The periodic orbit quantization on the anisotropic Kepler problem is tested. By computing the stability and action of some 2000 of the shortest periodic orbits, the eigenvalue spectrum of the anisotropic Kepler problem is calculated. The aim is to test the following claims for calculating the quantum spectrum of classically chaotic systems: (1) Curvature expansions of quantum mechanical zeta functions offer the best semiclassical estimates; (2) the real part of the cycle expansions of quantum mechanical zeta functions cut at appropriate cycle length offer the best estimates; (3) cycle expansions are superfluous; and (4) only a small subset of cycles (irreducible cycles) suffices for good estimates for the eigenvalues. No evidence is found to support any of the four claims.

This publication has 20 references indexed in Scilit: