Differential Activation of Mitogen-Activated Protein Kinases in Smooth Muscle Cells by Angiotensin II
- 1 April 2000
- journal article
- other
- Published by Wolters Kluwer Health in Arteriosclerosis, Thrombosis, and Vascular Biology
- Vol. 20 (4) , 940-948
- https://doi.org/10.1161/01.atv.20.4.940
Abstract
—The atherogenic effect of the renin-angiotensin system can be explained, in part, by the influence of its effector, angiotensin II (Ang II), on vascular smooth muscle cell (VSMC) growth. There is evidence that reactive oxygen species (ROS) play a role in the atherogenesis and activation of mitogen-activating protein (MAP) kinases, which are involved in proliferation and differentiation. The study was performed to further characterize the role of ROS in Ang II–mediated MAP kinase activation and the regulation of the transcription factor activator protein-1 (AP-1). Rat VSMCs were stimulated with Ang II. The activities of MAP kinases were assessed by Western blot analysis or by immunocomplex kinase assay. AP-1 binding was determined by using an electrophoretic mobility shift assay. Rat VSMCs were treated with Ang II–activated MAP kinases, extracellular signal–regulated kinase (ERK), c-Jun amino terminal kinase (JNK), p38 MAP kinase (p38 MAPK), and their downstream effector, AP-1. Interestingly, only the activation of ERK1/2, but not JNK or p38 MAPK, was tyrosine kinase, protein kinase C, and MEK1/2 dependent. Ang II also induced the rapid formation of ROS, which could be inhibited by a specific antibody as well as by antisense against the p22phox subunit of the NAD(P)H oxidase. JNK and p38 MAPK, but not ERK, activation was inhibited by an inhibitor of NAD(P)H oxidase. Antisense against p22phox also solely inhibited p38 MAPK but did not affect ERK. The results indicate that in VSMCs, Ang II activates MAP kinases and AP-1 through different pathways; the results further suggest that ROS, generated by p22phox, mediate Ang II–induced JNK and p38 MAPK activation, which may contribute to the pathogenesis of atherosclerosis.Keywords
This publication has 26 references indexed in Scilit:
- Stimulation of the p38 Mitogen-activated Protein Kinase Pathway in Neonatal Rat Ventricular Myocytes by the G Protein–coupled Receptor Agonists, Endothelin-1 and Phenylephrine: A Role in Cardiac Myocyte Hypertrophy?The Journal of cell biology, 1998
- Protein Kinase C, but Not Tyrosine Kinases or Ras, Plays a Critical Role in Angiotensin II-induced Activation of Raf-1 Kinase and Extracellular Signal-regulated Protein Kinases in Cardiac MyocytesJournal of Biological Chemistry, 1996
- p22 Is a Critical Component of the Superoxide-generating NADH/NADPH Oxidase System and Regulates Angiotensin IIinduced Hypertrophy in Vascular Smooth Muscle CellsJournal of Biological Chemistry, 1996
- Identification of an Essential Signaling Cascade for Mitogen-activated Protein Kinase Activation by Angiotensin II in Cultured Rat Vascular Smooth Muscle CellsJournal of Biological Chemistry, 1996
- Requirement for Generation of H 2 O 2 for Platelet-Derived Growth Factor Signal TransductionScience, 1995
- Pro-inflammatory Cytokines and Environmental Stress Cause p38 Mitogen-activated Protein Kinase Activation by Dual Phosphorylation on Tyrosine and ThreonineJournal of Biological Chemistry, 1995
- Molecular Cloning of the Human Angiotensin II Type 2 Receptor cDNABiochemical and Biophysical Research Communications, 1994
- Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells.The Journal of cell biology, 1994
- Isolation of a cDNA encoding the vascular type-1 angiotensin II receptorNature, 1991
- Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells.Hypertension, 1989