The Peroxisome Proliferator-Activated Receptor β/δ Agonist, GW501516, Regulates the Expression of Genes Involved in Lipid Catabolism and Energy Uncoupling in Skeletal Muscle Cells
- 1 December 2003
- journal article
- Published by The Endocrine Society in Molecular Endocrinology
- Vol. 17 (12) , 2477-2493
- https://doi.org/10.1210/me.2003-0151
Abstract
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyl-transferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARbeta/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.Keywords
This publication has 59 references indexed in Scilit:
- Peroxisome Proliferator-Activated Receptor (PPAR) α and PPARβ/δ, but not PPARγ, Modulate the Expression of Genes Involved in Cardiac Lipid MetabolismCirculation Research, 2003
- The Coactivator PGC-1 Is Involved in the Regulation of the Liver Carnitine Palmitoyltransferase I Gene Expression by cAMP in Combination with HNF4α and cAMP-response Element-binding Protein (CREB)Journal of Biological Chemistry, 2002
- Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibresNature, 2002
- Uncoupling protein 3 and fatty acid metabolismBiochemical Society Transactions, 2001
- Overexpression of UCP3 in cultured human muscle lowers mitochondrial membrane potential, raises ATP/ADP ratio, and favors fatty acid versus glucose oxidationThe FASEB Journal, 2001
- Uncoupling Protein-2 Negatively Regulates Insulin Secretion and Is a Major Link between Obesity, β Cell Dysfunction, and Type 2 DiabetesCell, 2001
- A Dynamic Role for HDAC7 in MEF2-mediated Muscle DifferentiationJournal of Biological Chemistry, 2001
- Estrogen Suppresses Transcription of Lipoprotein Lipase GeneJournal of Biological Chemistry, 2000
- Transcriptional Regulation of Muscle-Specific Genes during Myoblast DifferentiationBiochemical and Biophysical Research Communications, 1998
- A transcriptional co-repressor that interacts with nuclear hormone receptorsNature, 1995