Quantum dynamics of the phase of a Bose–Einstein condensate

Abstract
In this review we discuss the dynamics of the phase of trapped Bose–Einstein condensates. In particular we consider the phenomena of phase decoherence (termed also as phase collapse, or diffusion), and phase revival in systems of interacting atoms. We analyse the dependence of the collapse and revival times on the trap potential, dimensionality of the gas, atom number fluctuations, and on the coherent dynamics of the condensate. We show that in a class of experimentally relevant systems, the collapse time is relatively short, and in some cases vanishes in the limit of a large number of atoms, implying that the trapped Bose gas cannot sustain a well-defined quantum phase, and that the phase memory is lost on a relatively short time scale. Furthermore, we calculate the relative atom number fluctuations or a model of two interacting condensates, and show that the fluctuations are generically sub-Poissonian.