Investigation of basic imaging properties in digital radiography. 3. Effect of pixel size on SNR and threshold contrast

Abstract
The effect of pixel size on the signal-to-noise ratio (SNR) and threshold detection of low-contrast radiologic patterns was investigated theoretically for digital radiographic systems. The SNR based on the perceived statistical decision theory model, together with the internal noise of the human eye-brain system, was calculated by using 2-dimensional displayed digital signal spectra and noise Wiener spectra. Threshold contrasts were predicted from the calculated SNR for various combinations of object size and shape, pixel size, resolution, and noise. Predicted threshold contrasts agreed well with those determined experimentally in an observer performance study. The threshold contrast of small objects increased substantially as the pixel size increased beyond 0.2 mm. For pixel sizes of 0.1 and 0.2 mm, however, the threshold contrasts were similar. Since a digital system is not shift invariant, a range of threshold contrast results for a small object and a large pixel, depending on the alignment of the object position relative to the samping coordinates.