Tritium permeation and recovery for the helium-cooled molten salt fusion breeder
- 1 September 1984
- report
- Published by Office of Scientific and Technical Information (OSTI)
Abstract
Design concepts are presented to control tritium permeation from a molten salt/helium fusion breeder reactor. This study assumes tritium to be a gas dissolved in molten salt, with TF formation suppressed. Tritium permeates readily through the hot steel tubes of the reactor and steam generator and will leak into the steam system at the rate of about one gram per day in the absence of special permeation barriers, assuming that 1% of the helium coolant flow rate is processed for tritium recovery at 90% efficiency per pass. The proposed permeation barrier for the reactor tubes is a 10 ..mu..m layer of tungsten which, in principle, will reduce tritium blanket permeation by a factor of about 300 below the bare-steel rate. A research and development effort is needed to prove feasibility or to develop alternative barriers. A 1 mm aluminum sleeve is proposed to suppress permeation through the steam generator tubes. This gives a calculated reduction factor of more than 500 relative to bare steel, including a factor of 30 due to an assumed oxide layer. The permeation equations are developed in detail for a multi-layer tube wall including a frozen salt layer and with two fluid boundary-layer resistances. Conditions aremore » discussed for which Sievert's or Henry's Law materials become flux limiters. An analytical model is developed to establish the tritium split between wall permeation and reactor-tube flow.« lessKeywords
This publication has 0 references indexed in Scilit: