Fast sequential implementation of "neural-gas" network for vector quantization

Abstract
Although the "neural-gas" network proposed by Martinetz et al. in 1993 has been proven for its optimality in vector quantizer design and has been demonstrated to have good performance in time-series prediction its high computational complexity (TVlogN) makes it a slow sequential algorithm. In this letter we suggest two ideas to speedup its sequential realization: 1) using a truncated exponential function as its neighborhood function and 2) applying a new extension of the partial distance elimination method (PDE). This fast realization is compared with the original version of the neural-gas network for codebook design in image vector quantization. The comparison indicates that a speedup of five times is possible while the quality of the resulting codebook is almost the same as that of the straightforward realization.Department of Electronic and Information Engineerin

This publication has 9 references indexed in Scilit: