Resonance regions for families of torus maps
- 1 August 1989
- journal article
- Published by IOP Publishing in Nonlinearity
- Vol. 2 (3) , 391-404
- https://doi.org/10.1088/0951-7715/2/3/001
Abstract
A resonance region for a family of torus maps f:Tn to Tn is the set of parameter values for which there exists a periodic orbit with a given rotation vector. For generic periodic families, resonance regions are projections of multiply connected manifolds. In many cases these are tori. Numerical studies of the case n=2 illustrate the complicated internal bifurcation structure of the resonance regions. Codimension-two bifurcations and transversal homoclinic orbits are shown to exist. The authors discuss the significance of their findings for the transition to chaos from three-frequency quasiperiodic motion.Keywords
This publication has 14 references indexed in Scilit:
- Attractors on an N-torus: Quasiperiodicity versus chaosPublished by Elsevier ,2010
- Simultaneous rational approximations in the study of dynamical systemsPhysical Review A, 1986
- Renormalization of Mappings of the Two-TorusPhysical Review Letters, 1985
- Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2Commentarii Mathematici Helvetici, 1983
- Quasiperiodicity in dissipative systems: A renormalization group analysisPhysica D: Nonlinear Phenomena, 1982
- Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted studyCommunications in Mathematical Physics, 1982
- Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des RotationsPublications mathématiques de l'IHÉS, 1979
- Stable maps: An introduction with low dimensional examplesBulletin of the Brazilian Mathematical Society, New Series, 1976
- Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvaluesFunctional Analysis and Its Applications, 1975
- Quelques remarques sur les applications différentiables d'une surface dans le planAnnales de l'institut Fourier, 1960