In Vitro Synthesis of the Myelin Basic Proteins: Subcellular Site of Synthesis

Abstract
Brains of 3‐week‐old C57BL/6J mice were homogenized and fractionated into several subcellular components, each of which was examined for ability to synthesize the myelin basic proteins (MBPs) in vitro. Myelin basic proteins were purified from incubation mixtures by conventional means. That the products of synthesis were the myelin basic proteins was established by solubility at pH 3, co‐chromatography with authentic proteins on carboxymethylcellulose and co‐migration with standards in two different polyacrylamide gel electrophoretic systems. The fractions examined for their ability to synthesize MBPs were the whole homogenate, postnuclear supernatant, postmitochondrial supernatant, crude mitochondrial pellet, free ribosomes and bound ribosomes. Although there was no requirement for exogenous energy sources for protein synthesis in the whole homogenate, as the homogenate was fractionated an increasing requirement emerged. Most of the label in the MBP preparations from whole homogenate and postnuclear supernatant incubations migrated with the large (L) and small (S) MBPs on gel electrophoresis; however, as the homogenate was subfractionated and incubated, a greater percentage of the label migrated more slowly than L and S on acetic acid‐urea gels. To show synthesis of the MBPs the L and S bands were cut out of these gels and rerun on sodium dodecylsulfate gels. Alternatively, MBP preparations were subjected directly to two‐dimensional gel electrophoresis and the bands corresponding to L and S were excised and counted. With this method only the whole homogenate, postnuclear supernatant, postmitochondrial supernatant and free ribosomes were observed to synthesize the MBPs in vitro. The “bound” ribosomes were not observed to synthesize significant amounts of the MBPs, incubated either intact or released from the membrane. It was concluded that the free ribosomes are the principal site of synthesis of the myelin basic proteins in the brain.