Triple point of Yukawa systems

Abstract
The molecular dynamics simulations of Yukawa (i.e., screened-Coulomb) systems that were applied to the regime of weak screening in an earlier study [S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, J. Chem. Phys. 105, 7641 (1996)] are extended to the strong screening regime. Transition temperatures at the fluid-solid phase boundary and the solid-solid phase boundary are obtained as functions of the screening parameter κ=a/λD (i.e., the ratio of the Wigner-Seitz radius a to the Debye length λD). The resulting phase diagram also covers the triple point—the intersection of the fluid-solid and solid-solid phase boundaries—at κ=4.28 and Γ=5.6×103, where Γ is the ratio of the Coulomb potential energy to the kinetic energy per particle (i.e., Γ=Q2/4πε0akT, where Q is the charge of each Yukawa particle and T is the system temperature). Yukawa systems serve as models for plasmas and colloidal suspensions of charged particulates.