Abstract
In this paper, we consider the problem of determining logarithmic, as well as polynomial, asymptotic estimates for certain convergent integrals containing parameters. We state and prove an asymptotic theorem which gives the logarithmic asymptotic behavior of a convergent integral where any subset of the parameters becomes large while the remaining parameters remain bounded. This theorem is then applied to the photon and electron self‐energy graphs of quantum electrodynamics.

This publication has 5 references indexed in Scilit: