EIGENVALUE PROBLEMS WITH THE SPECTRAL PARAMETER ALSO IN THE BOUNDARY CONDITION
- 1 January 1982
- journal article
- research article
- Published by Taylor & Francis in Quaestiones Mathematicae
- Vol. 5 (1) , 1-27
- https://doi.org/10.1080/16073606.1982.9631878
Abstract
We study weak formulations of diffusion problems with “dynamical” boundary conditions where the “spatial” differential operator is uniformly strongly elliptic. Separation of time and spatial variables lead to non-coercive quadratic forms, and we introduce the notion of J-coercivity to handle this type of problem. The direct method of Courant is employed to prove the validity of the eigenfunction expansions The eigenfunction expansions are then used to construct series solutions of the underlying evolution equations.Keywords
This publication has 6 references indexed in Scilit:
- Two-point boundary value problems with eigenvalue parameter contained in the boundary conditionsProceedings of the Royal Society of Edinburgh: Section A Mathematics, 1977
- A note on eigenvalue problems with eigenvalue parameter in the boundary conditionsMathematische Zeitschrift, 1974
- Regular eigenvalue problems with eigenvalue parameter in the boundary conditionMathematische Zeitschrift, 1973
- Methoden der Mathematischen Physik IPublished by Springer Nature ,1968
- Rand- und Eigenwertaufgaben bei stark elliptischen Systemen linearer DifferentialgleichungenMathematische Annalen, 1962
- Applications of the theory of quadratic forms in Hilbert space to the calculus of variationsPacific Journal of Mathematics, 1951