Rayleigh wing and Fourier transform infrared studies of intermolecular and intramolecular hydrogen bonds in liquid ethylene glycol

Abstract
Depolarized low frequency light scattering and infrared data for ethylene glycol are presented. The measurements, performed in the temperature range 7–160 °C, help clarify the processes that characterize the dynamic response of the system. Rayleigh-wing data analysis suggests, through the width and intensity temperature evolution, the existence of a thermally activated process that can be rationalized in terms of a simple two-state model. The extracted activation (ΔH) and binding (ΔG) energies, have been attributed to the ‘transition’ from a gauche configuration, stabilized by an intramolecular H bond, to a simple gauche configuration. In addition, the study of the O-H stretching region, performed on ethylene glycol and on poly(ethylene glycol) by means of the Fourier transform infrared technique allows one to identify the intramolecular, H-bond imposed, sub-band, as well as to assign the various sub-bands originated by the existence of the H-bond potential. The observed dynamics are also discussed within the framework of current theories for associated liquids.