Coherent optical OFDM (CO-OFDM) has emerged as an attractive modulation format for the forthcoming 100 Gb/s Ethernet. However, even the spectral-efficient implementation of CO-OFDM requires digital-to-analog converters (DAC) and analog-to-digital converters (ADC) to operate at the bandwidth which may not be available today or may not be cost-effective. In order to resolve the electronic bandwidth bottleneck associated with DAC/ADC devices, we propose and elucidate the principle of orthogonal-band-multiplexed OFDM (OBM-OFDM) to subdivide the entire OFDM spectrum into multiple orthogonal bands. With this scheme, the DAC/ADCs do not need to operate at extremely high sampling rate. The corresponding mapping to the mixed-signal integrated circuit (IC) design is also revealed. Additionally, we show the proof-of-concept transmission experiment through optical realization of OBM-OFDM. To the best of our knowledge, we present the first experimental demonstration of 107 Gb/s QPSK-encoded CO-OFDM signal transmission over 1000 km standardsingle-mode-fiber (SSMF) without optical dispersion compensation and without Raman amplification. The demonstrated system employs 2×2 MIMO-OFDM signal processing and achieves high electrical spectral efficiency with direct-conversion at both transmitter and receiver.