Levels of significance of some two-sample tests wkem observations are from compound normal distributions
- 1 January 1976
- journal article
- research article
- Published by Taylor & Francis in Communications in Statistics - Theory and Methods
- Vol. 5 (4) , 325-342
- https://doi.org/10.1080/03610927608827354
Abstract
This paper presents an investigation of the behavior of the levels of significance of the two-sample t and its related tests and the Mann-Whitney test when the samples are randomly drawn from mixtures of two normal populations (compound normals) and when the sample sizes are small (combined sample sizes ⩽ 15). The use of the compound normal allows for investigation when the underlying populations are unequal, nonnormal, heterogeneous in variances, unimodal or bimodal, possessing smaller than normal kurtosis or containing contamination. The exact distribution of the t and its related tests are given. However, they are not readily amenable to calculations. Most of the numerical results presented were obtained by simulationsKeywords
This publication has 9 references indexed in Scilit:
- The density of the t-statistic for non-normal distributionsCommunications in Statistics, 1974
- Student's Distribution Under Non‐Normal SituationsAustralian Journal of Statistics, 1971
- Student'st-Test under Symmetry ConditionsJournal of the American Statistical Association, 1969
- Non-normality and heterogeneity in two samplet-testAnnals of the Institute of Statistical Mathematics, 1968
- The Effect on the t Distribution of Non-Normality in the Sampled PopulationJournal of the Royal Statistical Society Series C: Applied Statistics, 1968
- Series Representations of Distributions of Quadratic Forms in Normal Variables II. Non-Central CaseThe Annals of Mathematical Statistics, 1967
- Non-normality in two-sample t-testsBiometrika, 1953
- SIGNIFICANCE OF DIFFERENCE BETWEEN THE MEANS OF TWO NON-NORMAL SAMPLESBiometrika, 1950
- THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN TWO MEANS WHEN THE POPULATION VARIANCES ARE UNEQUALBiometrika, 1938