Single sweep analysis of visual evoked potentials through a model of parametric identification

Abstract
An original method is presented for the single sweep analysis of visual evoked potentials (VEP's). The introduced algorithm bases upon an AutoRegressive with eXogenous input (ARX) modelling. A Least Squares procedure estimates the coefficients of the model and allows to obtain a complete black-box description of the signal generation mechanism, besides providing a filtered version of the single sweep potential. The performance of the algorithm is verified on proper simulation tests and the experimental results put into evidence the noticeable improvement of signal-to-noise ratio with a consequent better recognition of the classical parameters of the peaks (latencies and amplitudes). The possibility of measuring these parameters on a single sweep basis enables to evaluate the dynamics of the Central Nervous System response during the entire course of the examination. A classification of the estimated evoked potentials in a small number of subsets, on the basis of their morphology, is also possible.