Methods for the solution ofAXD−BXC=E and its application in the numerical solution of implicit ordinary differential equations
- 1 September 1980
- journal article
- Published by Springer Nature in BIT Numerical Mathematics
- Vol. 20 (3) , 341-345
- https://doi.org/10.1007/bf01932775
Abstract
No abstract availableKeywords
This publication has 7 references indexed in Scilit:
- Improving the Efficiency of Matrix Operations in the Numerical Solution of Stiff Ordinary Differential EquationsACM Transactions on Mathematical Software, 1978
- The Combination Shift $QZ$ AlgorithmSIAM Journal on Numerical Analysis, 1975
- High order stiffly stable composite multistep methods for numerical integration of stiff differential equationsBIT Numerical Mathematics, 1973
- An Algorithm for Generalized Matrix Eigenvalue ProblemsSIAM Journal on Numerical Analysis, 1973
- Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4]Communications of the ACM, 1972
- Simultaneous Numerical Solution of Differential-Algebraic EquationsIEEE Transactions on Circuit Theory, 1971
- Implicit Runge-Kutta processesMathematics of Computation, 1964