Second Order Accurate Schemes for Magnetohydrodynamics With Divergence-Free Reconstruction
Abstract
In this paper we begin such an exploration. We study the problem of divergence-free numerical MHD and show that the work done so far still has four key unresolved issues. We resolve those issues in this paper. The problem of reconstructing MHD flow variables with spatially second order accuracy is also studied. The other goal of this paper is to show that the same well-designed second order accurate schemes can be formulated for more complex geometries such as cylindrical and spherical geometry. Being able to do divergence-free reconstruction in those geometries also resolves the problem of doing AMR in those geometries. The resulting MHD scheme has been implemented in Balsara's RIEMANN framework for parallel, self-adaptive computational astrophysics. The present work also shows that divergence-free reconstruction and the divergence-free time-update can be done for numerical MHD on unstructured meshes. All the schemes designed here are shown to be second order accurate. Several stringent test problems are presented to show that the methods work, including problems involving high velocity flows in low plasma-b magnetospheric environments.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: