Graviresponse and the localization of its initiating cells in roots of Phleum pratense L.

Abstract
Roots of Phleum pratense L. were photographed during both vertical growth and gravitropic bending, and positions of anticlinal rhizodermal cell walls were digitized on the physically upper and lower flanks of the root in the curvature plane. By using B-splines, arc lengths of these positions, i.e. distances along the root surface, values of curvature, and relative elemental rates of elongation were estimated. The whole graviresponse can be divided into phases according to growth-rate values: (i) an increase of rates on the upper side of the root and a decrease on the lower side during the first 1–11/2h after the root has been moved from the vertical to a horizontal position, (ii) a transient equality of the rates on both sides, (iii) 2–3 h after the beginning of graviresponse, the growth gradient is inverted, and (iv) finally, after about 4 h, the growth rates of both flanks are approximately equal again. Curvature begins 15–20 min after horizontal placement of the root. During the first 2 h of graviresponse, plots of curvature versus arc length show one maximum value. After 2–21/2 h, two maximum values can be observed, the apical one near the root tip always keeping the same distance from the tip, the other one drifting basipetally relative to the growing tip. By evaluating photographs of high magnification, a group of six rhizodermal cells on each side of the root was identified which are the first cells showing gravitropic bending. These cells are located at the beginning of the elongation zone, enclosing the region 480–680 μm from the root tip. These cells might be target cells for a signal which the statenchyma, the site of graviperception, sends to the reacting zone of gravicurvature.