Abstract
Steady convective motions in a Boussinesq fluid with an unstable thermal and stable salinity stratification are investigated in the case that the ratio of diffusivities τ = κS/κT [Lt ] 1. Using perturbation theory, it is shown that, for any value of the salt Rayleigh number RS, finite-amplitude convection can occur at values of the Ray-leigh number RT much less than that necessary for infinitesimal oscillations, provided only that T is sufficiently small. A simple qualitative argument is used to show how Rmin, the minimum value of RT for steady convection, varies with RS, and it is shown that the analytical results of the present paper form a natural complement to the numerical ones of Huppert & Moore (1976). Results are presented both for stress-free and for rigid boundaries, and applicability of the method to other related problems is suggested.

This publication has 9 references indexed in Scilit: