Photogalvanic Effects in Heteropolar Nanotubes

Abstract
We show that an electrical shift current is generated when electrons are photoexcited from the valence to conduction bands on a BN nanotube. This photocurrent follows the light pulse envelope and its symmetry is controlled by the atomic structure of the nanotube. We find that the shift current has an intrinsic quantum mechanical signature in which the chiral index of the tube determines the direction of the current along the tube axis. We identify discrete lattice effects in the tangent plane of the tube that lead to an azimuthal component of the shift current. The nanotube shift current can lead to ultrafast opto-electronic and opto-mechanical applications.

This publication has 0 references indexed in Scilit: