Elucidation of the hrp Clusters of Xanthomonas oryzae pv. oryzicola That Control the Hypersensitive Response in Nonhost Tobacco and Pathogenicity in Susceptible Host Rice
Open Access
- 1 September 2006
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 72 (9) , 6212-6224
- https://doi.org/10.1128/aem.00511-06
Abstract
Xanthomonas oryzae pv. oryzicola, the cause of bacterial leaf streak in rice, possesses clusters of hrp genes that determine its ability to elicit a hypersensitive response (HR) in nonhost tobacco and pathogenicity in host rice. A 27-kb region of the genome of X. oryzae pv. oryzicola (RS105) was identified and sequenced, revealing 10 hrp, 9 hrc (hrp conserved), and 8 hpa (hrp-associated) genes and 7 regulatory plant-inducible promoter boxes. While the region from hpa2 to hpaB and the hrpF operon resembled the corresponding genes of other xanthomonads, the hpaB-hrpF region incorporated an hrpE3 gene that was not present in X. oryzae pv. oryzae. We found that an hrpF mutant had lost the ability to elicit the HR in tobacco and pathogenicity in adult rice plants but still caused water-soaking symptoms in rice seedlings and that Hpa1 is an HR elicitor in nonhost tobacco whose expression is controlled by an hrp regulator, HrpX. Using an Hrp phenotype complementation test, we identified a small hrp cluster containing the hrpG and hrpX regulatory genes, which is separated from the core hrp cluster. In addition, we identified a gene, prhA (plant-regulated hrp), that played a key role in the Hrp phenotype of X. oryzae pv. oryzicola but was neither in the core hrp cluster nor in the hrp regulatory cluster. A prhA mutant failed to reduce the HR in tobacco and pathogenicity in rice but caused water-soaking symptoms in rice. This is the first report that X. oryzae pv. oryzicola possesses three separate DNA regions for HR induction in nonhost tobacco and pathogenicity in host rice, which will provide a fundamental base to understand pathogenicity determinants of X. oryzae pv. oryzicola compared with those of X. oryzae pv. oryzae.Keywords
This publication has 63 references indexed in Scilit:
- Control of the Ralstonia solanacearum Type III secretion system (Hrp) genes by the global virulence regulator PhcAFEBS Letters, 2005
- Structural conservation of the hrp gene cluster in Xanthomons oryzae pv. oryzaeJournal of General Plant Pathology, 2004
- Comparison of the genomes of two Xanthomonas pathogens with differing host specificitiesNature, 2002
- One‐step purification of the β‐glucan elicitor‐binding protein from soybean (Glycine max L.) roots and characterization of an anti‐peptide antiserumFEBS Letters, 1996
- HrpG, a KeyhrpRegulatory Protein ofXanthomonas campestrispv.vesicatoriaIs Homologous to Two-Component Response RegulatorsMolecular Plant-Microbe Interactions®, 1996
- Sequence and Expression Analysis of thehrpBPathogenicity Operon ofXanthomonas campestrispv.vesicatoriaWhich Encodes Eight Proteins with Similarity to Components of the Hrp, Ysc, Spa, and Fli Secretion SystemsMolecular Plant-Microbe Interactions®, 1995
- hrp Genes of Phytopathogenic BacteriaPublished by Springer Nature ,1994
- Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearumMolecular Microbiology, 1992
- A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative BacteriaBio/Technology, 1983
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970