Prenatal Neuroleptic Exposure Alters Postnatal Striatal Cholinergic Activity in the Rat

Abstract
Previous studies in our laboratory have shown that prenatal exposure to a neuroleptic during a critical period of gestation in the rat results in a marked deficit in the number of striatal dopamine-binding sites and in a diminution of dopamine agonist-induced stereotyped behavior. In the present studies, we examined the effect of prenatal neuroleptic exposure on biochemical parameters of cholinergic activity to determine whether the balance between striatal dopaminergic and cholinergic activity might be altered. The number of muscarinic cholinergic-binding sites and the specific activity of choline acetyl-transferase were found to be significantly increased by prenatal treatment with the neuroleptics haloperidol or (+)-butaclamol. From the present studies and previous observations made in our laboratory, it is concluded that the ability of a neuroleptic to affect the number of muscarinic cholinergic receptors in postnatal life may be a result of the phenotypically undifferentiated state of the developing dopamine-binding site. Our findings of increased striatal cholinergic activity accompanied by a marked decrease in dopaminergic activity may have implications for an increased vulnerability to extrapyramidal motor disturbances during postnatal development.