Attempts to correlate values of stomatal conductance and leaf water potential with particular environmental variables in the field are generally of only limited success because they are simultaneously affected by a number of environmental variables. For example, correlations between leaf water potential and either flux of radiant energy or vapour pressure deficit show a diurnal hysteresis which leads to a scatter diagram if many values are plotted. However, a simple model may be adequate to relate leaf water potential to the flow of water through the plant. The stomatal conductance of illuminated leaves is a function of current levels of temperature, vapour pressure deficit, leaf water potential (really turgor pressure) and ambient CO 2 concentration. Consequently, when plotted against any one of these variables a scatter diagram results. Physiological knowledge of stomatal functioning is not adequate to provide a mechanistic model linking stomatal conductance to all these variables. None the less, the parameters describing the relationships with the variables can be conveniently estimated from field data by a technique of non-linear least squares, for predictive purposes and to describe variations in response from season to season and plant to plant.