Calculation of gravity and magnetic anomalies along profiles with end corrections and inverse solutions for density and magnetization
Open Access
- 1 January 1977
- report
- Published by US Geological Survey in Open-File Report
Abstract
An equation derived for the vertical gravity field due to a body with polygonal cross section and finite strike length. The equations consists of the 2-dimensional equation of Talwani, Worzel, and Landisman (1959), with the addition of end corrections. Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973). They coined the term "2 1/2-dimensional" to describe the geometry. If the geometry of the causative body or bodies is specified, the 2 1/2-dimensional equations can be combined with observation of the gravity and magnetic anomaly fields to make linear least squares solutions for density and susceptibility or remanent magnetization. A computer program is presented which performs, for one or more bodies, along a profile perpendicular to strike, both forward calculations for the magnetic and gravity anomaly fields and independent gravity and magnetic inverse calculations for density and susceptibility or remanent magnetization.Keywords
This publication has 0 references indexed in Scilit: