Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries
- 1 July 1988
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 54 (7) , 1649-1655
- https://doi.org/10.1128/aem.54.7.1649-1655.1988
Abstract
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.This publication has 27 references indexed in Scilit:
- Effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystemsEnvironmental Toxicology and Chemistry, 1987
- Secondary substrate utilization of methylene chloride by an isolated strain of Pseudomonas spApplied and Environmental Microbiology, 1984
- Control of catechol meta-cleavage pathway in Alcaligenes eutrophusJournal of Bacteriology, 1983
- Microbial degradation of petroleum hydrocarbons: an environmental perspective.1981
- Hydrocarbon Biodegradation in Hypersaline EnvironmentsApplied and Environmental Microbiology, 1978
- Biodegradation of petroleum by Chesapeake Bay sediment bacteriaCanadian Journal of Microbiology, 1976
- The regulation of naphthalene metabolism in pseudomonadsBiochemical and Biophysical Research Communications, 1974
- Regulation of the β-Ketoadipate Pathway in Alcaligenes eutrophusJournal of Bacteriology, 1971
- OXIDATIVE METABOLISM OF PHENANTHRENE AND ANTHRACENE BY SOIL PSEUDOMONADS. THE RING-FISSION MECHANISMBiochemical Journal, 1965
- Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanismBiochemical Journal, 1964