On resonant nonlinear bubble oscillations
- 1 March 1991
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 224, 507-529
- https://doi.org/10.1017/s0022112091001854
Abstract
If a bubble were produced with an initial surface distortion, the energy carried by surface modes could be converted to other modes by nonlinear interaction, a conversion that provides a possible mechanism of second generation by bubbles. Longuet-Higgins (1989a,b) has argued that volume pulsation would be excited at twice the frequency of the distortion mode and that the response to such excitation is ‘surprisingly large’ when its frequency is close to the natural resonance frequency of the volumetrical mode. It is shown in this paper that this is feasible only if the driving system is sufficiently energetic to supply the energy involved in those volume pulsations, and that this is not generally the case. In the absence of external sources, the sum of energies in the interacting modes cannot exceed the initial bubble energy; an increase in one mode is always accompanied by a decrease in another. In contrast to any expectation of significant pulsations near resonance, we find that, once modal coupling is admitted, the volumetrical pulsation has very small amplitude in comparison with that of the initial surface distortion. This is because of the constraint of energy, a constraint that becomes more severe once damping is admitted. Our conclusion therefore is that the distortion modes of a bubble are unlikely to be the origin of an acoustically significant bubble response.Keywords
This publication has 10 references indexed in Scilit:
- Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initial-value problemJournal of Fluid Mechanics, 1989
- Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modesJournal of Fluid Mechanics, 1989
- Cavitation and bubble bursting as sources of oceanic ambient noiseThe Journal of the Acoustical Society of America, 1988
- Nonlinear oscillations of inviscid drops and bubblesJournal of Fluid Mechanics, 1983
- Nonlinear oscillations of non-spherical cavitation bubbles in acoustic fieldsJournal of Fluid Mechanics, 1980
- Nonlinear OscillationsJournal of Applied Mechanics, 1980
- Sound generation by turbulent two-phase flowJournal of Fluid Mechanics, 1969
- Acoustic Ambient Noise in the Ocean: Spectra and SourcesThe Journal of the Acoustical Society of America, 1962
- Gas Bubbles as Sources of Sound in LiquidsThe Journal of the Acoustical Society of America, 1956
- XVI.On musical air-bubbles and the sounds of running waterJournal of Computers in Education, 1933