Chaos-free numerical solutions of reaction-diffusion equations
- 8 September 1990
- journal article
- Published by The Royal Society in Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences
- Vol. 430 (1880) , 541-576
- https://doi.org/10.1098/rspa.1990.0106
Abstract
Two numerical methods, which do not bring contrived chaos into the solution, are proposed for the solution of the Riccati (logistic) equation. Though implicit in nature, with the resulting improvements in stability, the methods are applied explicitly. When extended to the numerical solution of Fisher's equation, in which the quadratic polynomial representing the derivative in the Riccati equation appears as the reaction term, the solution is found by solving a linear system of algebraic equations at each time step, as opposed to solving a nonlinear system which frequently happens when solving nonlinear partial differential equations. The approaches adopted are extended to an ordinary differential equation in which the derivative is expressed as a cubic polynomial in the dependent variable. The solution of this initial-value problem is not available in closed form for finite values of the independent variable t. Under the conditions stated, numerical solutions are seen to converge to the correct steady-state solution. A nonlinear partial differential equation which governs the conduction of electrical impulses along a nerve axon and which has the aforementioned cubic polynomial as its reaction term, is solved by applying the numerical methods developed for solving the ordinary differential equation. The solution to this nonlinear reaction-diffusion equation is determined by solving a linear algebraic system at each time step.Keywords
This publication has 11 references indexed in Scilit:
- Stability and Dynamics of Numerical Methods for Nonlinear Ordinary Differential EquationsIMA Journal of Numerical Analysis, 1990
- Stable Periodic Bifurcations of an Explicit Discretization of a Nonlinear Partial Differential Equation in Reaction DiffusionIMA Journal of Numerical Analysis, 1988
- Stable Periodic Solutions in Nonlinear Difference EquationsSIAM Journal on Scientific and Statistical Computing, 1988
- Nonlinear Stability and Asymptotics of O.D.E. SolversPublished by Springer Nature ,1988
- Chaos and the dynamics of biological populationsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1987
- An investigation of chaos in reaction-diffusion equationsNumerical Methods for Partial Differential Equations, 1987
- NUMERICAL STUDIES OF BIFURCATION AND PULSE EVOLUTION IN MATHEMATICAL BIOLOGYPublished by Elsevier ,1985
- A numerical study of the Belousov-Zhabotinskii reaction using Galerkin finite element methodsJournal of Mathematical Biology, 1983
- Differential Equations and Mathematical BiologyPublished by Springer Nature ,1983
- Dynamic Systems.Published by Defense Technical Information Center (DTIC) ,1979