High Rayleigh number β-convection

Abstract
High resolution numerical simulations of thermal convection in a rapidly rotating channel with gravity perpendicular to the rotation vector are described. The convecting columns are subject to a β-effect resulting from topographic vortex stretching. The symmetries of the problem allow many invariant wavenumber sets, and this property is associated with the existence of stable multiple-equilibria at modest supercriticality. The transition to chaotic behavior involves the production of intermittent unstable orbits off a two-torus in energy space. At very high Rayleigh number (of order 106 to 107) the motion can be turbulent, depending on the size of β. However, the turbulence is usually characterized by an almost-periodic formation of patches of small scale convection that cause regular pulsations in the accompanying strong zonal jets. The processes maintaining these flows may be related to those responsible for the zonal currents on Jupiter and for cyclic variability on the Sun.