Top Cited Papers
Open Access
Abstract
We present a concept and formalism, the string graph, which represents all that is inferable about a DNA sequence from a collection of shotgun sequencing reads collected from it. We give time and space efficient algorithms for constructing a string graph given the collection of overlaps between the reads and, in particular, present a novel linear expected time algorithm for transitive reduction in this context. The result demonstrates that the decomposition of reads into k mers employed in the de Bruijn graph approach described earlier is not essential, and exposes its close connection to the unitig approach we developed at Celera. This paper is a preliminary piece giving the basic algorithm and results that demonstrate the efficiency and scalability of the method. These ideas are being used to build a next-generation whole genome assembler called BOA (Berkeley Open Assembler) that will easily scale to mammalian genomes. Contact:gene@eecs.berkeley.edu