Multiple-bit storage properties of porphyrin monolayers on SiO2

Abstract
Hybrid molecule-silicon capacitors have been fabricated by the self-assembly of a monolayer of porphyrin molecules on a silicon oxide surface. The porphyrin employed [5-(4-dihydroxyphosphorylphenyl)-10,15,20-trimesitylporphinatozinc(II)] attaches to silicon oxide via a phosphonate linkage. Cyclic voltammetry current and capacitance/conductance measurements have been used to characterize the capacitors. The presence of multiple distinct peaks in current density and capacitance/conductance measurements are associated with oxidation and reduction of the molecular monolayer. The charge-storage states of the capacitor indicate applicability for use in multiple-bit memory devices.